A 4√6 cm. B. 4√5 cm. C. 4√3 cm. D. 4√2 cm. E. 4. Pembahasan: Jarak antara titik M dan garis AG yaitu panjang MO. Perhatikan ilustrasi gambar dan perhitungan berikut: Jadi j arak antara titik M dan garis AG adalah 4√2 cm.
Materi Skala Geografi SmPSkala = 5 cm ÷ 5 km= 5 cm cm= 1FungsiTotient Euler, φ(n) [terkadang disebut fungsi phi], digunakan untuk menentukan banyaknya bilangan yang lebih kecil dari n, dan juga relatif prima terhadap n. Sebagai contoh, 1, 2, 4, 5, 7, dan 8, adalah semua angka yang kurang dari sembilan, dan relatif prima terhadap sembilan, φ(9)=6.- Sebelumnya pasti kalian telah mengetahui apa itu dimensi tiga. Pada pembahasan kali ini kita akan mempelajari mengenai bagaimana cara menentukan jarak antara titik dengan bidang pada dimensi tiga. Simak ilustrasi di bawah ini. Jarak titik A dengan bidang p, dimana titik A berada di luar bidang p, adalah panjang garis AA'. Titik A' diperoleh dari proyeksi titik A pada bidang p, yang mana titik A harus tegak lurus dengan bidang p. FAUZIYYAH Ilustrasi jarak titik A dengan bidang p, dimana jaraknya adalah AA' Mari simak studi kasus pada bangun ruang kubus di bawah agar kita dapat menerapkan konsep menentukan titik dengan bidang pada dimensi juga Bidang Miring Definisi dan Keuntungan Mekanik FAUZIYYAH Ilustrasi bangun ruang kubus dan membentuk bidang ADGF Misalkan diketahui kubus seperti gambar di atas, dengan panjang rusuknya adalah 6 cm. Titik A, titik D, titik G, dan titik F dihubungkan sehingga membentuk bidang ADGF. Coba tentukanlah jarak antara titik B ke bidang ADGF. Dikutip dari Mathematical Dictionary 1857, langkahnya adalah dengan menentukan panjang ruas garis yang tegak lurus bidang ADGF dan melalui titik B. Mari perhatikan ilustrasi proyeksi titik B ke bidang ADGF. FAUZIYYAH Ilustrasi bangun ruang kubus untuk menentukan jarak titik B ke bidang ADGF .